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I. Standard Model at low energies

1. Interactions

strong weak e.m. gravity

SU(3) × SU(2) × U(1) × D

Gravity

understood only at classical level

gravitational waves
√

quantum theory of gravity ?

classical theory adequate for

r ≫
√

G h̄

c3
= 1.6 · 10−35 m

Weak interaction

frozen at low energies

E ≪Mw c
2 ≃ 80GeV

⇒ structure of matter: only strong and

electromagnetic interaction

⇒ neutrini decouple
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Electromagnetic interaction

Maxwell ∼ 1860

survived relativity and quantum theory, unharmed

• Electrons in electromagnetic field (h̄ = c = 1)

1

i

∂ψ

∂t
− 1

2m2
e
(~∇ + i e ~A)2ψ − e ϕψ = 0

contains the potentials ~A, ϕ

• only ~E = −~∇ϕ− ∂ ~A

∂t
and ~B = ~∇× ~A

are of physical significance

• Schrödinger equation is invariant under gauge

transformations

~A ′ = ~A+ ~∇f , ϕ ′ = ϕ− ∂f

∂t
, ψ ′ = e−ief ψ

describe the same physical situation as ~A, ϕ, ψ
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• Equivalence principle of the e.m. interaction:

ψ physically equivalent to e−ief ψ

• e−ief is unitary 1 × 1 matrix, e−ief ∈ U(1)

f = f(~x, t) space-time dependent function

• gauge invariance ⇐⇒ local U(1) symmetry

electromagnetic field is gauge field of U(1)

Weyl 1929

• U(1) symmetry + renormalizability

fully determine the e.m. interaction
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Strong interaction

nuclei = p + n ∼ 1930

• Nuclear forces

Yukawa ∼ 1935

Ve.m. = − e2

4πr
Vs = − h2

4πr
e
− r
r0

e2

4π
≃ 1

137

h2

4π
≃ 13

long range short range

r0 = ∞ r0 =
h̄

Mπc
= 1.4 · 10−15 m

Mγ = 0 Mπ c
2 ≃ 140MeV

• Problem with Yukawa formula:

p and n are extended objects

diameter comparable to range of force

formula only holds for r ≫ diameter
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• Protons, neutrons composed of quarks

p = uud n = udd

• Quarks carry internal quantum number

u =









u1
u2
u3









d =









d1
d2
d3









occur in 3 “colours”

• Strong interaction is invariant under

local rotations in colour space 1973

u ′ = U · u d ′ = U · d

U =







U11 U12 U13
U21 U22 U23
U31 U32 U33






∈ SU(3)

• Can only be so if the strong interaction

is also mediated by a gauge field

gauge field of SU(3) =⇒ strong interaction

Quantum chromodynamics
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Comparison of e.m. and strong interaction

QED QCD

symmetry U(1) SU(3)

gauge field ~A , ϕ gluon field

particles photons gluons

source charge colour

coupling
constant e g

• All charged particles generate e.m. field

• All coloured particles generate gluon field

• Leptons do not interact strongly

because they do not carry colour

• Equivalence principle of the strong interaction:

U ·







u1
u2
u3






physically equivalent to







u1
u2
u3






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2. QED+QCD

Effective theory for E≪Mwc2 ≃ 80GeV

Symmetry

Lagrangian

U(1)×SU(3)

QED+QCD

• Dynamical variables:

gauge fields for photons and gluons

Fermi fields for leptons and quarks

• Interaction fully determined by group geometry

Lagrangian contains 2 coupling constants

e, g

• Quark and lepton mass matrices can be brought

to diagonal form, eigenvalues real, positive

me, mµ, mτ , mu, md, ms, mc, mb, mt

• Transformation generates vacuum angle

θ

11



• Precision theory for cold matter,

atomic structure, solids, . . .

Bohr radius: a =
4π

e2me

• θ breaks CP

Neutron dipole moment is very small

⇒ strong upper limit, θ ≃ 0
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Qualitative difference between
e.m. and strong interactions

• Photons do not have charge

• Gluons do have colour

x1 · x2 = x2 · x1 for x1, x2 ∈ U(1) abelian

x1 · x2 6= x2 · x1 for x1, x2 ∈ SU(3)

⇒ Consequence for vacuum polarization

QED
Density of charge

QCD
Density of colour

bare positron

cloud of electrons
and positrons

r

bare red quark

cloud of gluons is red

cloud of quarks
and antiquarks

r

e < ebare

vacuum
shields charge

g > gbare

vacuum
amplifies colour
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Comparison with gravity

• source of gravitational field: energy

gravitational field does carry energy

• source of e.m. field: charge

e.m. field does not carry charge

• source of gluon field: colour

gluon field does carry colour

gravity strong interaction

sun u

u

planet feels
less than total
energy of the sun

u quark feels
less than total
colour of u

Perihelion shift of Mercury:

43′′ = 50′′ − 7′′ per century
⇑
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• Force between u and u :

Vs = −4

3

g2

4πr
, g → 0 for r → 0

g2

4π
=

6π

(11Nc − 2Nf) | ln(rΛQCD)|

| ln(rΛQCD)| ≃ 7 for r =
h̄

MZ c
≃ 2 · 10−18 m

• Vacuum amplifies gluonic field of a bare quark

• Field energy surrounding isolated quark = ∞
Only colour neutral states have finite energy

⇒ Confinement of colour

• Theoretical evidence for confinement meagre

Experimental evidence much more convincing

QED: interaction weak at low energies

QCD: interaction strong at low energies

e2

4π
≃ 1

137

photons, leptons
nearly decouple

g2

4π
≃ 1

gluons, quarks
confined

• Nuclear forces = van der Waals forces of QCD
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3. Chiral symmetry

• Photons are extremely useful to probe QCD

Much of what we know about the structure of the hadrons stems

scattering experiments involving electrons or photons

e+N → e+N form factors of the nucleon

e+N → e+hadrons deep inelastic scattering

electroproduction, photoproduction

⇒ several lectures and seminars at this school
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• For bound states of quarks,

e.m. interaction is a small perturbation

Perturbation series in powers of
e2

4π

√

Discuss only the leading term: set e = 0

• Lagrangian then reduces to QCD

g , mu ,md , ms , mc , mb , mt

• mu,md,ms happen to be light

Consequence:

Approximate flavour symmetries

Play a crucial role for the low energy properties
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Theoretical paradise

mu = md = ms = 0

mc = mb = mt = ∞

QCD with 3 massless quarks

• Lagrangian contains a single parameter: g

g is net colour of a quark

depends on radius of the region considered

• Colour contained within radius r

g2

4π
=

2π

9 | ln(rΛQCD)|

• Intrinsic scale ΛQCD is meaningful,

but not dimensionless

⇒ No dimensionless free parameter

All dimensionless physical quantities are pure

numbers, determined by the theory

Cross sections can be expressed in terms of

ΛQCD or in the mass of the proton
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• Interactions of u, d, s are identical

If the masses are set equal to zero,

there is no difference at all

q =







u
d
s







• Lagrangian symmetric under u↔ d↔ s

q′ = V · q V ∈ SU(3)

V acts on quark flavour, mixes u, d, s

• More symmetry: For massless fermions,

right and left do not communicate

⇒ Lagrangian of massless QCD is invariant under

independent rotations of the right– and left–

handed quark fields

q
R
= 1

2(1 + γ5) q , q
L
= 1

2(1 − γ5) q

q′
R
= V

R
· q

R
q′

L
= V

L
· q

L

SU(3)R × SU(3)L
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• Massless QCD invariant under SU(3)R×SU(3)L

SU(3) has 8 parameters

⇒ Symmetry under Lie group with 16 parameters

⇒ 16 conserved “charges”

QV
1, . . . , Q

V
8 (vector currents, R+ L)

QA
1, . . . , Q

A
8 (axial currents, R− L)

commute with the Hamiltonian:

[QV
i , H0] = 0 [QA

i , H0] = 0

“Chiral symmetry” of massless QCD

• Vafa and Witten 1984: state of lowest energy

is invariant under the vector charges

QV
i |0〉 = 0

• Axial charges ? QA
i |0〉 =?
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Two alternatives for axial charges

QA
i |0〉 = 0

Wigner-Weyl realization of G
ground state is symmetric

〈0|qR qL |0〉 = 0

ordinary symmetry
spectrum contains parity partners

degenerate multiplets of G

QA
i |0〉 6= 0

Nambu-Goldstone realization of G
ground state is asymmetric

〈0|qR qL |0〉 6= 0

“order parameter”
spontaneously broken symmetry

spectrum contains Nambu-Goldstone bosons
degenerate multiplets of SU(3)V ⊂G

G = SU(3)R × SU(3)L
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• Spontaneous symmetry breakdown was

discovered in condensed matter physics:

Spontaneous magnetization selects direction

⇒ Rotation symmetry is spontaneously broken

Nambu-Goldstone bosons = spin waves, magnons

• Nambu 1960: state of lowest energy in particle

physics is not invariant under chiral rotations

QA
i |0〉 6= 0

For dynamical reasons, the state of

lowest energy must be asymmetric

⇒ Chiral symmetry is spontaneously broken

• Very strong experimental evidence
√

• Theoretical understanding on the basis

of the QCD Lagrangian ?
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• Analog of Magnetization ?

qR qL =









uR uL dR uL sR uL

uR dL dR dL sR dL

uR sL dR sL sR sL









Transforms like (3̄,3) under SU(3)R × SU(3)L

If the ground state were symmetric, the matrix

〈0|qR qL |0〉 would have to vanish, because it

singles out a direction in flavour space

“quark condensate”, is quantitative measure

of spontaneous symmetry breaking

“order parameter”

〈0|qR qL |0〉 ⇔ magnetization

• Ground state is invariant under SU(3)V

⇒ 〈0|qR qL |0〉 is proportional to unit matrix

〈0|uR uL |0〉 = 〈0|dR dL |0〉 = 〈0|sR sL |0〉
〈0|uR dL |0〉 = . . . = 0
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4. Goldstone Theorem

• Consequence of QA
i |0〉 6= 0 :

H0Q
A
i |0〉 = QA

i H0 |0〉 = 0

spectrum must contain 8 states

QA
1 |0〉, . . . , QA

8 |0〉 with E = 0,

spin 0, negative parity, octet of SU(3)V

Nambu-Goldstone bosons

• Argument is not water tight:

〈0|QA
i Q

A
k |0〉 =

∫

d3xd3y 〈0|A0
i (x)A

0
k(y) |0〉

〈0|A0
i (x)A

0
k(y) |0〉 only depends on ~x− ~y

⇒ 〈0|QA
i Q

A
k |0〉 is proportional to the

volume of the universe, |QA
i |0〉| = ∞
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• Rigorous version of Goldstone theorem:

〈0|qR qL |0〉 6= 0 ⇒ ∃ massless particles

Proof fasten seatbelts: takes 3 slides

Q =

∫

d3xuγ0γ5d

[Q,dγ5u] = −uu− dd

• Fµ(x− y) ≡ 〈0|u(x)γµγ5d(x)d(y)γ5u(y) |0〉
Lorentz invariance ⇒ Fµ(z) = zµf(z2)

Chiral symmetry ⇒ ∂µFµ(z) = 0

Fµ(z) =
zµ

z4
× constant (for z2 6= 0)

• Spectral decomposition:

Fµ(x− y) = 〈0|u(x)γµγ5d(x)d(y)γ5u(y) |0〉

=
∑

n
〈0|uγµγ5d|n〉〈n|dγ5u |0〉 e−i pn(x−y)

p0n ≥ 0 ⇒ Fµ(z) is analytic in z0 for Im z0 < 0

Fµ(z) =
zµ

{(z0 − iǫ)2 − ~z 2}2 × constant
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• Positive frequency part of massless propagator:

(exercise # 1)

∆+(z,0)=
i

(2π)3

∫

d3p

2p0
e−ipz , p0 = |~p |

=
1

4π i {(z0 − iǫ)2 − ~z 2}
• Result

〈0|u(x)γµγ5d(x)d(y)γ5u(y) |0〉 = C ∂µ∆+(z,0)

• Compare Källen–Lehmann representation:

〈0|u(x)γµγ5d(x)d(y)γ5u(y) |0〉

= (2π)−3
∫

d4p pµ ρ(p2)e−ip(x−y)

=
∫ ∞

0
ds ρ(s)∂µ∆+(x− y, s)

∆+(z, s) ⇐⇒ massive propagator

∆+(z, s) =
i

(2π)3

∫

d4p θ(p0) δ(p2 − s) e−ipz

⇒ Only massless intermedate states contribute:

ρ(s) = C δ(s)
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• Why only massless intermediate states ?

〈n|dγ5u |0〉 6= 0 only if 〈n| has spin 0

If |n〉 has spin 0 ⇒ 〈0|u(x)γµγ5d(x)|n〉 ∝ pµ e−ipx

∂µ(uγµγ5d) = 0 ⇒ p2 = 0

⇒ Either ∃ massless particles or C = 0

• Claim: 〈0|qR qL|0〉 6= 0 ⇒ C 6= 0

Lorentz invariance, chiral symmetry

⇒ 〈0|d(y)γ5u(y)u(x)γµγ5d(x) |0〉 = C′ ∂µ∆−(z)
⇒ 〈0| [u(x)γµγ5d(x), d(y)γ5u(y)] |0〉

= C∂µ∆+(z,0) − C′∂µ∆−(z,0)
• Causality: if x− y is spacelike, then

〈0| [u(x)γµγ5d(x), d(y)γ5u(y)] |0〉 = 0

⇒ C′ = −C

⇒ 〈0| [u(x)γµγ5d(x), d(y)γ5u(y)] |0〉 = C∂µ∆(z,0)

⇒ 〈0| [Q, d(y)γ5u(y)] |0〉 = C

• 〈0| [Q, d(y)γ5u(y)] |0〉 = −〈0|uu+ dd |0〉 = C

Hence 〈0|uu+ dd |0〉 6= 0 implies C 6= 0 qed.
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5. Gell-Mann-Oakes-Renner relation

Spectrum of QCD with 3 massless quarks must

contain 8 massless physical particles, JP = 0−

• Indeed, the 8 lightest mesons do have these

quantum numbers:

π+, π0, π−,K+,K0, K̄0,K−, η

But massless they are not, because

mu , md , ms 6= 0

Quark masses break chiral symmetry

• Chiral symmetry broken in two ways:

spontaneously 〈0|qR qL |0〉 6= 0

explicitly mu , md , ms 6= 0
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• HQCD only has approximate symmetry, to the

extent that mu,md,ms are small

HQCD = H0 +H1

H1 =

∫

d3x {muuu+mddd+msss}

• H0 is Hamiltonian of the massless theory,

invariant under SU(3)R×SU(3)L

• H1 breaks the symmetry,

transforms with (3, 3̄) ⊕ (3̄,3)

• For the low energy structure of QCD, the

heavy quarks do not play an essential role:

c, b, t are singlets under SU(3)R×SU(3)L

Can include the heavy quarks in H0

• Nambu-Goldstone bosons are massless only if

the symmetry is exact
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Gell-Mann-Oakes-Renner formula:

M2
π = (mu +md) × |〈0|uu |0〉| × 1

F2
π

1968

⇑ ⇑
explicit spontaneous

Coefficient: decay constant Fπ

• Why M2
π ∝ (mu +md) ?

〈0|u(x)γµγ5d(x)|π−〉=i
√

2Fπ p
µe−ip·x

〈0|u(x) i γ5d(x)|π−〉=
√

2Gπe
−ip·x

• Current conservation

∂µ(uγ
µγ5d)=(mu +md)u i γ5d

⇒
√

2Fπ p
2=(mu +md)

√
2Gπ

p2=M2
π

⇒ M2
π = (mu +md)

Gπ

Fπ
exact

• Expand in powers of mu,md:

Gπ

Fπ
= B +O(m)

⇒M2
π = (mu +md)B +O(m2)
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•M2
π = (mu +md)B +O(m2)

•Mπ disappears if the symmetry breaking

is turned off, mu,md → 0
√

• Explains why the pseudoscalar mesons

have very different masses

M2
K+ = (mu +ms)B +O(m2)

M2
K− = (md +ms)B +O(m2)

⇒M2
K is about 13 times larger than M2

π , because

mu,md happen to be small compared to ms

• First order perturbation theory also yields

M2
η = 1

3 (mu +md + 4ms)B +O(m2)

⇒M2
π − 4M2

K + 3M2
η = O(m2)

Gell-Mann-Okubo formula for M2
√
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Checking the GMOR formula on a lattice

• Can determine Mπ as function of mu=md=m

0 0.01 0.02 0.03am
0

0.02

0.04

0.06

0.08

(amπ)2
mπ∼676 MeV

484

381

294

fit to 4 points
fit to 5 points

(amPS)
2

(aµ)

0.0160.0120.0080.0040

0.08

0.06

0.04

0.02

0

Lüscher, Lattice conference 2005 ETM collaboration, hep-lat/0701012

• No quenching, quark masses sufficiently light

⇒ Legitimate to use χPTfor the extrapolation to

the physical values of mu,md
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• Quality of data is impressive

• Proportionality of M2
π to the quark mass ap-

pears to hold out to values of mu,md that are

an order of magnitude larger than in nature

• Main limitation: systematic uncertainties

in particular: Nf = 2 → Nf = 3
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II. Chiral perturbation theory

6. Group geometry

• QCD with 3 massless quarks:

spontaneous symmetry breakdown

from SU(3)R×SU(3)L to SU(3)V

generates 8 Nambu-Goldstone bosons

• Generalization: suppose symmetry group

of Hamiltonian is Lie group G

Generators Q1, Q2, . . . , QD, D = dim(G)

For some generators Qi |0〉 6= 0

How many Nambu-Goldstone bosons ?

• Consider those elements of the Lie algebra

Q = α1Q1 + . . .+ αnQD, for which Q |0〉 = 0

These elements form a subalgebra:

Q |0〉 = 0, Q′ |0〉 = 0 ⇒ [Q,Q′] |0〉 = 0

Dimension of subalgebra: d ≤ D

• Of the D vectors Qi |0〉
D − d are linearly independent

⇒ D − d different physical states of zero mass
⇒ D − d Nambu-Goldstone bosons
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• Subalgebra generates subgroup H⊂G

H is symmetry group of the ground state

coset space G/H contains as many parameters

as there are Nambu-Goldstone bosons

d = dim(H), D = dim(G)

⇒ Nambu-Goldstone bosons live on the coset

G/H

• Example: QCD with Nf massless quarks

G = SU(Nf)R × SU(Nf)L

H = SU(Nf)V

D = 2(N2
f − 1), d = N2

f − 1

N2
f − 1 Nambu-Goldstone bosons

• It so happens that mu,md ≪ ms

• mu = md = 0 is an excellent approximation

SU(2)R× SU(2)L is a nearly exact symmetry

Nf = 2, N2
f − 1 = 3 Nambu-Goldstone bosons

(pions)
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7. Generating functional of QCD

• Basic objects for quantitative analysis of QCD:

Green functions of the currents

V µa =q γµ1
2λa q , A

µ
a = q γµγ5

1
2λa q ,

Sa=q 1
2λa q , Pa = q i γ5

1
2λa q

Include singlets, with λ0 =
√

2/3× 1, as well as

ω =
1

16π2
tr
c
GµνG̃

µν

• Can collect all of the Green functions formed

with these operators in a generating functional:

Perturb the system with external fields

vaµ(x), a
a
µ(x), sa(x), p

a(x), θ(x)

Replace the Lagrangian of the massless theory

L0 = − 1

2g2
tr
c
GµνG

µν + q iγµ(∂µ − iGµ) q

by L = L0 + L1

L1 = vaµV
µ
a + aaµA

µ
a − saSa − paPa − θ ω

• Quark mass terms are included in the external

field sa(x)
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• |0 in〉: system is in ground state for x0 → −∞
Probability amplitude for finding ground state

when x0 → +∞:

eiSQCD{v,a,s,p,θ}=〈0out|0 in〉
v,a,s,p,θ

• Expressed in terms of ground state of L0:

eiSQCD{v,a,s,p,θ}=〈0|T exp i
∫

dxL1 |0〉

• Expansion of SQCD{v, a, s, p, θ} in powers of the

external fields yields the connected parts of

the Green functions of the massless theory

SQCD{v, a, s, p, θ} = −
∫

dx sa(x)〈0|Sa(x) |0〉

+ i
2

∫

dxdy aaµ(x)a
b
ν(y)〈0| TAµa(x)Aνb(y) |0〉conn + . . .

• SQCD{v, a, s, p, θ} is referred to as the

generating functional of QCD

• For Green functions of full QCD, set

sa(x) = ma + s̃a(x) , ma = trλam

and expand around s̃a(x) = 0
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• Path integral representation for generating

functional:

eiSQCD{v,a,s,p} = N
∫

[dG] e i
∫

dxLG detD

LG = − 1

2g2
tr
c
GµνG

µν − θ

16π2
tr
c
GµνG̃

µν

D = iγµ{∂µ − i(Gµ + vµ + aµγ5)} − s− iγ5p

Gµ is matrix in colour space

vµ, aµ, s, p are matrices in flavour space

vµ(x) ≡ 1
2λa v

a
µ(x), etc.

38



8. Ward identities

Symmetry in terms of Green functions

• Lagrangian is invariant under

qR(x) → VR(x) qR(x) , qL(x) → VL(x) qL(x)

VR(x), VL(x) ∈ U(3)

provided the external fields are transformed with

v′µ + a′µ=VR(vµ + aµ)V
†
R − i∂µVRV

†
R

v′µ − a′µ=VL(vµ − aµ)V
†
L − i∂µVLV

†
L

s′ + i p′=VR(s+ i p)V
†
L

The operation takes the Dirac operator into

D′=
{

P−VR + P+VL

}

D
{

P+V
†
R + P−V

†
L

}

P±=1
2(1 ± γ5)

• detD requires regularization

∃/ symmetric regularization

⇒ detD′ 6= detD, only |detD′ | = |detD |
symmetry does not survive quantization

39



• Change in detD can explicitly be calculated

For an infinitesimal transformation

VR = 1+ i α+ iβ+ . . . , VL = 1+ i α− iβ+ . . .

the change in the determinant is given by

detD′ = detD e−i
∫

dx {2〈β〉ω+〈βΩ〉}

〈A〉 ≡ trA

ω =
1

16π2
tr
c
GµνG̃

µν gluons

Ω =
Nc

4π2
ǫµνρσ∂µvν∂ρvσ + . . . ext. fields

• Consequence for generating functional:

The term with ω amounts to a change in θ,

can be compensated by θ′ = θ − 2 〈β〉
Pull term with 〈βΩ〉 outside the path integral

⇒ SQCD{v′, a′, s′, p′, θ′} = SQCD{v, a, s, p, θ} −
∫

dx〈βΩ〉
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SQCD{v′, a′, s′, p′, θ′} = SQCD{v, a, s, p, θ} −
∫

dx〈βΩ〉

• SQCD is invariant under U(3)R×U(3)L, except

for a specific change due to the anomalies

• Relation plays key role in low energy analysis:

collects all of the Ward identities

For the octet part of the axial current,e.g.

∂xµ〈0|TAµa(x)Pb(y) |0〉 = −1
4 i δ(x− y)〈0|q{λa, λb}q |0〉

+ 〈0|Tq(x) iγ5{m, 12λa}q(x)Pb(y) |0〉

• Symmetry of the generating functional implies

the operator relations

∂µV
µ
a =q i[m, 12λa]q , a = 0, . . . ,8

∂µA
µ
a=q iγ5{m, 12λa}q , a = 1, . . . ,8

∂µA
µ
0 =

√

2
3 q iγ5mq+

√
6ω

• Textbook derivation of the Ward identities

goes in inverse direction, but is slippery

formal manipulations, anomalies ?
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9. Low energy expansion

• If the spectrum has an energy gap

⇒ no singularities in scattering amplitudes

or Green functions near p = 0

⇒ low energy behaviour may be analyzed with

Taylor series expansion in powers of p

f(t)=1 + 1
6〈r

2〉 t+ . . . form factor

T(p)=a+ b p2 + . . . scattering amplitude

Cross section dominated by

S–wave scattering length

dσ

dΩ
≃ |a|2

• Expansion parameter:
p

m
=

momentum

energy gap

• Taylor series only works if the spectrum

has an energy gap, i.e. if there are

no massless particles

42



• Illustration: Coulomb scattering

p

p′

e

e

e

e

γ

Photon exchange ⇒ pole at t = 0

T =
e2

(p′ − p)2

Scattering amplitude does not admit

Taylor series expansion in powers of p

• QCD does have an energy gap

but the gap is very small: Mπ

⇒ Taylor series has very small radius of

convergence, useful only for p < Mπ
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• Massless QCD contains infrared singularities

due to the Nambu-Goldstone bosons

• For mu = md = 0, pion exchange gives rise to

poles and branch points at p = 0

⇒ Low energy expansion is not a Taylor series,

contains logarithms

Singularities due to Nambu-Goldstone bosons can

be worked out with an effective field theory

Chiral Perturbation Theory

Weinberg, Dashen, Pagels, Gasser, . . .

• Chiral perturbation theory correctly reproduces

the infrared singularities of QCD

• Quantities of interest are expanded in powers

of external momenta and quark masses

• Expansion has been worked out to

next-to-leading order for many quantities

”Chiral perturbation theory to one loop”

• In quite a few cases, the next-to-next-to-leading

order is also known
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• Properties of the Nambu-Goldstone bosons are

governed by the hidden symmetry that

is responsible for their occurrence

• Focus on the singularities due to the pions

HQCD = H0 +H1

H1 =
∫

d3x {muuu+mddd}

H0 is invariant under G = SU(2)R × SU(2)L

|0〉 is invariant under H = SU(2)V

mass term of strange quark is included in H0

• Treat H1 as a perturbation

Expansion in

powers of H1

⇐⇒ Expansion in

powers of mu,md

• Extension to SU(3)R×SU(3)L straightforward:

include singularities due to exchange of K, η
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10. Effective Lagrangian

• Replace quarks and gluons by pions

~π(x) = {π1(x), π2(x), π3(x)}
LQCD → Leff

• Central claim:

A. Effective theory yields alternative

representation for generating functional of QCD

eiSQCD{v,a,s,p,θ} = Neff

∫

[dπ]ei
∫

dxLeff{~π,v,a,s,p,θ}

B. Leff has the same symmetries as LQCD

• Lagrangian of QCD is invariant under

qR(x) → VR(x) qR(x) , qL(x) → VL(x) qL(x)

VR(x), VL(x) ∈ U(3)

provided the external fields are transformed with

v′µ + a′µ=VR(vµ + aµ)V
†
R − i∂µVRV

†
R

v′µ − a′µ=VL(vµ − aµ)V
†
L − i∂µVLV

†
L

s′ + i p′=VR(s+ i p)V
†
L

• SQCD{v, a, s, p, θ} invariant modulo anomalies
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• Action of the symmetry on the meson field:

U ′ = VR · U · V †
L

• Leff also invariant modulo anomalies:

Leff{U ′, v′, a′, s′, p′, θ′} = Leff{U, v, a, s, p, θ} (⋆)

11. Explicit construction of Leff

Construct the general solution of (⋆)

• First ignore the external fields,

Leff = Leff(U, ∂U, ∂2U, . . .)

Order in the number of derivatives

• Symmetry fixes leading term up to a constant:

Leff =
F2

4
tr(∂µU∂

µU†) +O(p4)
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Leff =
F2

4
tr(∂µU∂

µU†) +O(p4)

• Lagrangian of the nonlinear σ-model

• Expansion in powers of ~π:

U = exp i ~π · ~τ = 1 + i ~π · ~τ − 1
2 ~π

2 + . . .

⇒ Leff = F2

2 ∂µ~π · ∂µ~π+ F2

48tr{[∂µπ, π] [∂µπ, π]}+ . . .

For the kinetic term to have the standard

normalization: rescale the pion field, ~π → ~π/F

Leff = 1
2 ∂µ~π ·∂µ~π+ 1

48F2tr{[∂µπ, π] [∂µπ, π]}+ . . .

⇒ a. Symmetry requires the pions to interact

b. Derivative coupling: Nambu-Goldstone bosons

only interact if their momentum does not

vanish ⇒ λπ4/
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• Expression given for Leff only holds if the ex-

ternal fields are turned off. Also, tr(∂µU∂µU†)
is invariant only under global transformations

Suffices to replace ∂µU by

DµU = ∂µU − i(vµ + aµ)U + i U(vµ − aµ)

In contrast to tr(∂µU∂µU†), the term tr(DµUDµU†)
is invariant under local SU(2)R× SU(2)L

• Can construct further invariants: s+ ip

transforms like U ⇒ tr{(s+ ip)U†} is invariant

Violates parity, but tr{(s+ip)U†}+tr{(s−ip)U}
is even under p→ −p, ~π → −~π
In addition, ∃ invariant independent of U :

DµθDµθ, with Dµθ = ∂µθ+ 2tr(aµ)

• Count the external fields as

θ = O(1), vµ, aµ = O(p), s, p = O(p2)
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• Derivative expansion yields string of the form

Leff = L(2) + L(4) + L(6) + . . .

• Full expression for leading term:

L(2) =
F2

4
〈DµUDµU† + χU† + Uχ†〉 + h0DµθD

µθ

χ ≡ 2B (s+ ip) , 〈X〉 ≡ tr(X)

• Contains 3 constants: F,B, h0

“effective coupling constants”

”low energy constants”, LEC

• Next-to-leading order:

L(4)=
ℓ1
4
〈DµUDµU〉2 +

ℓ2
4
〈DµUDνU〉〈DµUDνU〉

+
ℓ3
4
〈χU† + Uχ†〉2 +

ℓ4
4
〈DµχDµU† +DµUD

µχ†〉
+ . . .

• Number of effective coupling constants rapidly

grows with the order of the expansion
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• Infinitely many effective coupling constants

Symmetry does not determine these

Predictivity ?

• Essential point: If Leff is known to given order

⇒ can work out low energy expansion of the

Green functions to that order (Weinberg 1979)

• NLO expressions for Fπ,Mπ involve 2 new

coupling constants: ℓ3, ℓ4.

In the ππ scattering amplitude, two further

coupling constants enter at NLO: ℓ1, ℓ2.

• Note: effective theory is a quantum field theory

Need to perform the path integral

eiSQCD{v,a,s,p,θ} = Neff

∫

[dπ]ei
∫

dxLeff{~π,v,a,s,p,θ}
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• Classical theory ⇔ tree graphs

Need to include graphs with loops

• Power counting in dimensional regularization:

Graphs with ℓ loops are suppressed by factor

p2ℓ as compared to tree graphs

⇒ Leading contributions given by tree graphs

Graphs with one loop contribute at next-to-

leading order, etc.

• The leading contribution to SQCD is given by

the sum of all tree graphs = classical action:

SQCD{v, a, s, p, θ} = extremum
U(x)

∫

dxLeff{U, v, a, s, p, θ}
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III. Illustrations

12. Some tree level calculations

A. Extracting the quark condensate from

the generating functional

• To calculate the quark condensate of the mass-

less theory, it suffices to consider the generat-

ing functional for v = a = p = θ = 0 and to

take a constant scalar external field

s =

(

mu 0
0 md

)

• Expansion in powers of mu and md treats

H1 =
∫

d3x {muuu+mddd} as a perturbation

SQCD{0,0,m,0,0} = S0
QCD + S1

QCD + . . .

• S0
QCD is independent of the quark masses

(cosmological constant)

• S1
QCD is linear in the quark masses
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• First order in mu, md ⇒ expectation value of

H1 in unperturbed ground state is relevant

S1
QCD = −

∫

dx〈0|muuu+mddd |0〉

⇒ 〈0|uu |0〉 and 〈0|dd |0〉 are the coefficients of

the terms in SQCD that are linear in mu and md

B. Condensate in terms of effective theory

• Need the effective action for v = a = p = θ = 0

to first order in s

⇒ classical level of effective theory suffices.

• extremum of the classical action: U = 1

S1
QCD =

∫

dxF2B(mu +md)

• comparison with

S1
QCD = −

∫

dx〈0|muuu+mddd |0〉 yields

〈0|uu |0〉 = 〈0|dd |0〉 = −F2B (1)
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C. Evaluation of Mπ at tree level

• In classical theory, the square of the mass is

the coefficient of the term in the Lagrangian

that is quadratic in the meson field:

F2

4
〈χU† + Uχ†〉 =

F2B

2
〈m(U† + U)〉

= F2B(mu +md){1 − ~π 2

2F2
+ . . .}

Hence M2
π = (mu +md)B (2)

• Tree level result for Fπ:

Fπ = F (3)

• (1) + (2) + (3) ⇒ GMOR relation:

M2
π =

(mu +md) |〈0|uu |0〉|
F2
π
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13. Mπ beyond tree level

• The formula M2
π = (mu +md)B only holds at

tree level, represents leading term in expansion

of M2
π in powers of mu,md

• Disregard isospin breaking: set mu = md = m

A. Mπ to 1 loop

• Claim: at next-to-leading order, the expansion

of M2
π in powers of m contains a logarithm:

M2
π = M2 − 1

2

M4

(4πF)2
ln

Λ 2
3

M2
+O(M6)

M2 ≡ 2mB

• Proof: Pion mass ⇔ pole position, for instance

in the Fourier transform of 〈0|TAµa(x)Aνb(y) |0〉
Suffices to work out the perturbation series for

this object to one loop of the effective theory
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• Result (exercise # 5):

M2
π = M2+

2 ℓ3M
4

F2
+
M2

2F2

1

i
∆(0,M2)+O(M6)

∆(0,M2) is the propagator at the origin

(exercise # 2):

∆(0,M2)=
1

(2π)d

∫

ddp

M2 − p2 − iǫ

=i (4π)−d/2 Γ(1 − d/2)Md−2

• Contains a pole at d = 4:

Γ (1 − d/2) =
2

d− 4
+ . . .

• Divergent part is proportional to M2:

Md−2=M2µd−4(M/µ)d−4 = M2µd−4e(d−4) ln(M/µ)

=M2µd−4{1 + (d− 4) ln(M/µ) + . . .}
• Denote the singular factor by

λ≡ 1

2
(4π)−d/2 Γ(1 − d/2)µd−4

=
µd−4

16π2

{

1

d− 4
− 1

2
(ln 4π+ Γ′(1) + 1) +O(d− 4)

}
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• The propagator at the origin then becomes

1

i
∆(0,M2)=M2

{

2λ+
1

16π2
ln
M2

µ2
+O(d− 4)

}

• In the expression for M2
π

M2
π = M2+

2 ℓ3M
4

F2
+
M2

2F2

1

i
∆(0,M2)+O(M6)

the divergence can be absorbed in ℓ3:

ℓ3 = −1

2
λ+ ℓ ren

3

• ℓ ren
3 depends on the renormalization scale µ

ℓ ren
3 =

1

64π2
ln
µ2

Λ2
3

running coupling constant

• Λ3 is the ren. group invariant scale of ℓ3

Net result for M2
π

M2
π = M2 − 1

2

M4

(4πF)2
ln

Λ 2
3

M2
+O(M6)

⇒M2
π contains a chiral logarithm at NLO



• Crude estimate for Λ3, based on SU(3) mass

formulae for the pseudoscalar octet:

0.2 GeV < Λ3 < 2 GeV

ℓ̄3 ≡ ln
Λ2

3

M2
π

= 2.9 ± 2.4 Gasser, L. 1984

∃ better determination ℓ̄3 on the lattice, to be discussed later

⇒ Next–to–leading term is small correction:

0.005 <
1

2

M2
π

(4πFπ)2
ln

Λ 2
3

M2
π
< 0.04

• Scale of the expansion is set by size of

pion mass in units of decay constant:

M2

(4πF)2
≃ M2

π

(4πFπ)2
= 0.0144
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B. Mπ to 2 loops

• Terms of order m3
quark:

M2
π=M2 − 1

2

M4

(4πF)2
ln

Λ 2
3

M2

+
17

18

M6

(4πF)4

(

ln
Λ 2

M

M2

)2

+ kMM
6 +O(M8)

F is pion decay constant for mu = md = 0

ChPT to two loops Colangelo 1995

• Coefficients 1
2 and 17

18 determined by symmetry

• Λ3,ΛM and kM ⇐⇒ coupling constants in Leff
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14. Fπ to one loop

• Also contains a logarithm at NLO:

Fπ=F

{

1− M2

16π2F2
ln
M2

Λ 2
4

+O(M4)

}

M2
π=M2

{

1+
M2

32π2F2
ln
M2

Λ 2
3

+O(M4)

}

F is pion decay constant in limit mu,md → 0

• Structure is the same, coefficients and scale of

logarithm are different
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15. Pion form factors

• Scalar form factor of the pion:

Fs(t) = 〈π(p′)|q q |π(p)〉 , t = (p′ − p)2

• Definition of scalar radius:

Fs(t) = Fs(0)

{

1 +
1

6
〈r2〉

s
t+O(t2)

}

• Low energy theorem:

〈r2〉
s
=

6

(4πF)2

{

ln
Λ2

4

M2
− 13

12
+O(M2)

}

⇒ In massless QCD, the scalar radius diverges,
because the density of the pion cloud only de-
creases with a power of the distance

• Same infrared singularity also occurs in the
charge radius (e.m. current), but coefficient
of the chiral logarithm is 6 times smaller:

〈r2〉
s

=
6

(4πF)2

{

ln
Λ2

4

M2
− 13

12
+O(M2)

}

〈r2〉
em

=
1

(4πF)2

{

ln
Λ2

6

M2
− 1 +O(M2)

}

⇒ 〈r2〉
s
> 〈r2〉

em
if M small enough
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• 〈r2〉
em

can be determined experimentally

〈r2〉
em

= 0.439 ± 0.008 fm2

NA7 Collaboration, NP B277 (1986) 168

• Scalar form factor of the pion can be calculated

by means of dispersion theory

• Result for the slope:

〈r2〉
s

= 0.61 ± 0.04 fm2

Colangelo, Gasser, L., Nucl. Phys. 2001

⇒ Corresponding value of the scale Λ4:

Λ4 = 1.26 ± 0.14GeV
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16. Lattice results for Mπ, Fπ

A. Results for Mπ

• Determine the scale Λ3 by comparing the

lattice results for Mπ as function of m with

the χPTformula

M2
π = M2 − 1

2

M4

(4πF)2
ln

Λ 2
3

M2
+O(M6)

M2 ≡ 2Bm

0

0

1

1

2

2

3

3

4

4

5

5

6

6

CERN-TOV 07

ETM 08B

JLQCD/TWQCD 08A

ETM 07, 08A

RBC/UKQCD 08

PACS-CS 08

GL 84

N
f=

3
N

f=
2

lattice results for ℓ̄3

Horizontal axis shows the value of ℓ̄3 ≡ ln
Λ 2

3

M2
π

Range for Λ3 obtained in 1984 corresponds to ℓ̄3 = 2.9 ± 2.4

Result of RBC/UKQCD 2008: ℓ̄3 = 3.13 ± 0.33
stat

± 0.24
syst
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B. Results for Fπ

Fπ = F

{

1− M2

16π2F2
ln
M2

Λ 2
4

+O(M4)

}

2.5

2.5

3

3

3.5

3.5

4

4

4.5

4.5

5

5

ETM 08B

JLQCD/TWQCD 08A

ETM 07, 08A

JLQCD/TWQCD 09

RBC/UKQCD 08

PACS-CS 08

CGL 01

GL 84

N
f=

3
N

f=
2

Horizontal axis shows the value of ℓ̄4 ≡ ln
Λ 2

4

M2
π

• Lattice results beautifully confirm the predic-

tion for the sensitivity of Fπ to mu,md:

Fπ

F
= 1.072 ± 0.007 Colangelo, Dürr 2004
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17. ππ scattering

A. Low energy scattering of pions

• Consider scattering of pions with ~p = 0

• At ~p = 0, only the S-waves survive (angular

momentum barrier). Moreover, these reduce

to the scattering lengths

• Bose statistics: S-waves cannot have I = 1,

either have I = 0 or I = 2

⇒ At ~p = 0, the ππ scattering amplitude is

characterized by two constants: a00, a
2
0

• Chiral symmetry suppresses the interaction at

low energy: Nambu-Goldstone bosons of zero

momentum do not interact

⇒ a00, a
2
0 disappear in the limit mu,md → 0

⇒ a00, a
2
0 ∼M2

π measure symmetry breaking
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B. Tree level of χPT

• Low Energy theorem Weinberg 1966:

a00=
7M2

π

32πF2
π

+O(M4
π)

a20=− M2
π

16πF2
π

+O(M4
π)

⇒ Chiral symmetry predicts a00, a
2
0 in terms of Fπ

• Accuracy is limited: Low energy theorem

only specifies the first term in the expansion

in powers of the quark masses

Corrections from higher orders ?
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C. Scattering lengths at 1 loop

• Next term in the chiral perturbation series:

a00=
7M2

π

32πF2
π

{

1 +
9

2

M2
π

(4πFπ)2
ln

Λ2
0

M2
π

+O(M4
π)

}

• Coefficient of chiral logarithm unusually large

Strong, attractive final state interaction

• Scale Λ0 is determined by the coupling

constants of L(4)
eff :

9

2
ln

Λ2
0

M2
π

=
20

21
ℓ̄1 +

40

21
ℓ̄2 − 5

14
ℓ̄3 + 2 ℓ̄4 +

5

2

• Information about ℓ̄1, . . . , ℓ̄4 ?

ℓ̄1, ℓ̄2 ⇐⇒ momentum dependence

of scattering amplitude

⇒ Can be determined phenomenologically

ℓ̄3, ℓ̄4 ⇐⇒ dependence of scattering

amplitude on quark masses

Have discussed their values already
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D. Numerical predictions from χPT

0.16 0.18 0.2 0.22 0.24 0.26

-0.06

-0.05

-0.04

-0.03

1966
1983 1996

Universal Band
tree, one loop, two loops
low energy theorem for scalar radius
Colangelo, Gasser & L. 2001

a00

a20

Sizable corrections in a00
a20 nearly stays put
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E. Consequence of lattice results for ℓ3, ℓ4

• Uncertainty in prediction for a00, a
2
0 is domi-

nated by the uncertainty in the effective cou-

pling constants ℓ3, ℓ4

• Can make use of the lattice results for these

0.19 0.2 0.21 0.22 0.23 0.24

a0
0

-0.05

-0.045

-0.04

-0.035

-0.03

a
2
0

Universal Band
scalar radius
Colangelo, Gasser & Leutwyler
NPLQCD
CERN-TOV
JLQCD
ETM
PACS-CS
RBC/UKQCD
MILC
Feng, Jansen & Renner
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F. Experiments concerning a0
0
, a2

0

• Production experiments πN → ππN ,

ψ → ππω, B → Dππ, . . .

Problem: pions are not produced in vacuo

⇒ Extraction of ππ scattering amplitude is

not simple

Accuracy rather limited

• K± → π+π−e±ν data:

CERN-Saclay, E865, NA48/2

• K± → π0π0π±, K0 → π0π0π0: cusp near

threshold, NA48/2

• π+π− atoms, DIRAC
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G. Results from Ke4 decay

K± → π+π−e±ν

• Allows clean measurement of δ00 − δ11

Theory predicts δ00 − δ11 as function of energy

0.28 0.3 0.32 0.34 0.36 0.38 0.4
GeV

-5

0

5

10

15

20

δ0
0− δ1

1

theoretical prediction 2001
CERN-Saclay 1977 isospin corrected
E865 2003 isospin corrected
NA48/2 2006 isospin corrected

Prediction: a00 = 0.220 ± 0.005

NA48/2: a00 = 0.2206± 0.0049
stat

± 0.0018
syst

± 0.0064
theo

Bloch-Devaux, Chiral Dynamics 2009
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• There was a discrepancy here, because a

pronounced isospin breaking effect from

K→π0π0eν→π+π−eν
had not been accounted for in the data analysis

Colangelo, Gasser, Rusetsky 2007, Bloch-Devaux 2007

0.28 0.3 0.32 0.34 0.36 0.38 0.4
GeV

-5

0

5

10

15

20

δ0
0− δ1

1

theoretical prediction 2001
CERN-Saclay 1977
E865 2003
NA48/2 2006

data not corrected for isospin breaking

• The correction is not enormous, but matters:

If a00 is determined from the uncorrected NA48

data, the central value comes out higher than

the theoretical prediction by about 4 times the

uncertainty attached to this prediction.
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H. Summary for a0
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18. Conclusions for SU(2)×SU(2)

• Expansion in powers of mu,md yields a very

accurate low energy representation of QCD

• Lattice results confirm the GMOR relation

⇒ Mπ is dominated by the contribution from the

quark condensate

⇒ Energy gap of QCD is understood very well

• Lattice approach allows an accurate

measurement of the effective coupling constant

ℓ3 already now

• Even for ℓ4, the lattice starts becoming

competitive with dispersion theory
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19. Expansion in powers of ms

• Theoretical reasoning

• The eightfold way is an approximate

symmetry

• The only (?) way to understand this within

QCD: ms −md, md −mu are small, can be

treated as perturbations

• Since mu,md ≪ ms

⇒ ms can be treated as a perturbation

⇒ Expect expansion in powers of ms to work,

but convergence to be comparatively slow

• This can now also be checked on the lattice
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• Consider the limit mu,md → 0, ms physical

• F is value of Fπ in this limit

• B is value of M2
π/(mu+md) in this limit

• Σ is value of |〈0| ūu |0〉| in this limit

• Exact relation: Σ = F2B

• F0, B0,Σ0: values for mu = md = ms = 0

• Nc → ∞: F,B,Σ become independent of ms

F/F0 → 1, B/B0 → 1, Σ/Σ0 → 1

⇒ The differences F/F0−1, B/B0−1, Σ/Σ0−1

measure the violations of the OZI rule
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A. Condensate
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Σ/Σ0

Σ = −〈0|uu |0〉
mu,md→0

, Σ0 = Σ
ms→0

• PACS-CS indicates only modest OZI-violations

• MILC and RBC/UKQCD allow juicy violations

⇒ The lattice results do not yet allow to draw

conclusions about the size of the OZI-violations

in the quark condensate
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B. Results for B, F
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F/F0

• F is the crucial factor in Σ = F2B

• Picture for size of OZI-violations in B,F
remains unclear

• Main problem: systematic uncertainties
of the lattice calculations
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• If the central value F/F0 = 1.23 of RBC/UKQCD

were confirmed within small uncertainties, we

would be faced with a qualitative puzzle:

• Fπ is the pion wave function at the origin

• FK is larger because one of the two valence

quarks is heavier → moves more slowly

→ wave function more narrow → higher at

the origin: FK/Fπ ≃ 1.19

• F/F0 = 1.23 indicates that the wave func-

tion is more sensitive to the mass of the

sea quarks than to the mass of the valence

quarks . . . very strange → most interesting

if true

• No such puzzle with the PACS-CS results
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C. Expansion to NLO

Involves the effective coupling constants L4

and L6 of the SU(3)×SU(3) Lagrangian:

F/F0=1 +
8M2

K

F2
0

L4 + χlog + . . .

Σ/Σ0=1 +
32M2

K

F2
0

L6 + χlog + . . .

B/B0=1 +
16M2

K

F2
0

(2L6 − L4) + χlog + . . .

MK is the kaon mass for mu = md = 0.

⇒ The LECs L4 and L6 measure the deviations

from the OZI-rule
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D. Effective coupling constants L4, L5, L6, L8

-2 -2

-1 -1
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3 3
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3
L

L4 L5 L6 L8 2L6-L4 2L8-L5
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Kaiser 05
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Bijnens & Dhonte 03
Meissner & Oller 01
Moussallam 00
Gasser & L. 85

Numerical values shown refer to running scale µ = Mρ

⇒ For PACS-CS, only the statistical errors are indicated

• Latest lattice results for the OZI-violating coupling constants L4

and L6 are consistent with one another

• Indicate that the OZI-rule is well obeyed: values are close to zero

• For L5 and L8, the lattice results are less clear
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20. Conclusions for SU(3)×SU(3)

• The crude estimates given 25 years ago for the

LECs relevant at NLO are confirmed

⇒ Expansion in powers of ms appears to work:

In all cases I know, where the calculation is un-

der control, the truncation at low order yields

a decent approximation

⇒ The picture looks coherent, also for SU(3)×SU(3)

• ms ≫ mu,md ⇒ higher orders more important

• For many observables ∃ representation to NNLO

Bijnens and collaborators

• Main problem: new LECs relevant at NNLO

∃ estimates based on resonance models

Vector meson dominance
√

Scalar meson dominance ?
Dependence on mu,md,ms: scalar resonances

•• Lattice results now start providing more precise

values for the LECs, but the settling of dust is

a slow process . . .
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IV. Some recent results

21. Masses of the light quarks

• χPT plays an important role in the analysis of

lattice data: describes the dependence of the

various observables on the quark masses and

on the size of the box in terms of a few LECs
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Results for quark mass ratios

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

mu
md

0 0

5 5

10 10

15 15

20 20

25 25

ms
md

χPT fails χPT must

be reordered

Bijnens & Ghorbani 07

Gao, Yan & Li 97

Kaiser 97
Leutwyler 96

Schechter et al. 93
Donoghue, Holstein & Wyler 92

Gerard 90
Cline 89
Gasser & Leutwyler 82

Langacker & Pagels 79

Weinberg 77

Gasser & Leutwyler 75

Q from η decay 

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

mu
md

0 0

5 5

10 10

15 15

20 20

25 25

FLAG 10 (preliminary)

PACS-CS 09
MILC 09
PACS-CS 08
RBC/UKQCD 08
RBC 07
Namekawa & Kikukawa 06
MILC 04
Nelson, Fleming & Kilcup 03
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mud
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mu
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= 0.474 ± 0.040
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None of the lattice results is consistent with the ”solu-
tion” mu = 0 of the strong CP problem
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Comparison
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22. Vus and Vud
• Experimental sources for Vus and Vud:

superallowed nuclear β transitions |Vud|
K → πℓν |f+(0)Vus|
π → ℓν, τ → πν |VudFπ|
K → ℓν, τ → Kν |Vus FK|
inclusive τ decays |Vus|

• Vector current relevant for nuclear β decay is

conserved modulo mu −md

⇒ analog of f+(0) is very close to unity

|Vud| = 0.97425±0.00022 Hardy + Towner 2009

• Can determine Vus from K → πℓν only if f+(0)

is known. Early determinations were based on

χPT prediction for that

• Lattice calculations now provide reliable and

precise determination of f+(0) ⇒ |Vus|
• Results for Fπ, FK do not yet reach sufficient

precision, but those for the ratio FK/Fπ do

⇒ Vus

Vud
can be determined from

Γ(K → ℓν)

Γ(π → ℓν)
⇒ can test the Standard Model:

|Vud|2 + |Vus|2 + |Vub|2 = 1
?

|Vub| known well enough, contribution is tiny
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• Testing the Standard Model with the lattice

data alone

|Vu|2 ≡ |Vud|2 + |Vus|2 + |Vub|2 = 1.002 ± 0.016

• Lattice results for Vud are consistent with the

value obtained from nuclear β-decay

⇒ Test sharpens if the two are combined:

|Vu|2=1.0000 ± 0.0007 f+(0) + Vud

|Vu|2=0.9999 ± 0.0007 FK/Fπ + Vud
⇑ ⇑

Lattice β-decay

⇒ Can impose |Vu|2 = 1 as a constraint (SM)

|Vus| |Vud| f+(0) fK/fπ

Lattice 0.225(2) 0.9743(4) 0.960(8) 1.193(11)

β decay 0.225(1) 0.9743(2) 0.960(5) 1.192(6)

FLAG review 2010 (preliminary)
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• Direct determination of |Vus| from τ decay:

Sort out the final states in the inclusive decay

τ → ν + hadrons:

Γ = Γ(τ → ν + strange hadrons) + rest

First term dominated by |Vus|2, rest by |Vud|2
Gamiz, Jamin, Pich, Prades, Schwab
Maltman, Wolfe, Banerjee, Nugent, Roney
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Data on |Vus| and |Vud| analyzed within the SM:

0.21

0.21

0.22

0.22

0.23

0.23

|Vus|

N
f=

3
N

f=
2

τ decay
τ and e

+
e

-

0.972

0.972

0.974

0.974

0.976

0.976

0.978

0.978

|Vud|

ETM 09

ETM 07

QCDSF/UKQCD 07

ETM 09A

QCDSF 07

RBC 06
JLQCD 05

MILC 09

ALVdW 08
PACS-CS 08

BMW 10

HPQCD/UKQCD 08
RBC/UKQCD 08
RBC/UKQCD 07
NPLQCD 06
MILC 04

FLAG 2010 (preliminary)

nuclear β decay

Gamiz 08
Maltman 09

MILC 09A

JLQCD/TWQCD 09B

RBC/UKQCD 10

89



23. Concluding remarks

• These lectures focused on the low energy prop-

erties of the sector with zero baryon number:

NB = 1
3(Nu + Nd + Ns + Nc + Nb + Nt) = 0.

Moreover, only states with Nc = Nb = Nt = 0

were discussed.

• There is considerable progress in extending

χPT to the sector with NB = 1, as well as

to nuclei, where NB = 2,3 . . .

Hint: ask Prof. Scherer for a course on these developments

• Effective theory for heavy quark bound states

• Mesons with a heavy and a light quark

• Extension from QCD to QCD + QED
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• Puzzle in K → πµν
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• History of the issue: data on the slope of the

scalar form factor

f0(t) = f0(0)
{

1 + λ0 t+ λ′0 t
2 +O(t3)

}
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• Extend χPT with dispersion theory

Example: form factors relevant for K → πℓν

f0(t) = f0(0)
{

1 + λ0 t+ λ′0 t
2 + . . .

}

χPT: λ0 ↔ NLO, λ′0 ↔ NNLO

Dispersion theory implies very strong

correlation between λ0 and λ′0
Abbas, Ananthanarayan, Caprini, Imsong 2010
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• Dispersive analysis of ππ and πK scattering,

η → 3π, . . .

If time permits, I can explain how dispersion theory can be used to

extend the χPT result for the ππ scattering lengths to a

model-independent prediction for mass and width of the σ meson
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Exercises

1. Evaluate the positive frequency part of the massless propagator

∆+(z,0) =
i

(2π)3

∫

d3k

2k0
e−ikz , k0 = |~k|

for Imz0 < 0. Show that the result can be represented as

∆+(z,0) =
1

4πiz2

2. Evaluate the d-dimensional propagator

∆(z,M) =

∫

ddk

(2π)d
e−ikz

M2 − k2 − iǫ

at the origin and verify the representation

∆(0,M) =
i

4π
Γ

(

1 − d

2

)

(

M2

4π

) d
2
−1

How does this expression behave when d→ 4 ?
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3. Leading order effective Lagrangian:

L(2) =
F 2

4
〈DµUD

µU† + χU† + Uχ†〉 + h0DµθD
µθ

DµU = ∂µU − i(vµ + aµ)U + i U(vµ − aµ)

χ = 2B (s+ ip)

Dµθ = ∂µθ+ 2〈aµ〉
〈X〉 = trX

• Take the space-time independent part of the external field
s(x) to be isospin symmetric (i. e. set mu = md = m):

s(x) = m1 + s̃(x)

• Expand U = exp i φ/F in powers of φ = ~φ · ~τ and check that,
in this normalization of the field φ, the kinetic part takes the
standard form

L(2) = 1
2
∂µ~φ · ∂µ~φ− 1

2
M2~φ2 + . . .

with M2 = 2mB.

• Draw the graphs for all of the interaction vertices containing
up to four of the fields φ, vµ, aµ, s̃, p, θ.
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4. Show that the classical field theory belonging to the QCD La-
grangian in the presence of external fields is invariant under

v′µ + a′µ = VR(vµ + aµ)V
†
R

− i∂µVRV
†
R

v′µ − a′µ = VL(vµ − aµ)V
†
L
− i∂µVLV

†
L

s′ + i p′ = VR(s+ i p)V †
L

q′R = VR qR(x)

q′L = VL qL

where VR, VL are space-time dependent elements of U(3).

5. Evaluate the pion mass to NLO of χPT . Draw the relevant
graphs and verify the representation

M2
π = M2 +

2 ℓ3M4

F 2
+

M2

2F 2

1

i
∆(0,M2) +O(M6)

6. Start from the symmetry property of the effective action,

SQCD{v′, a′, s′, p′, θ′} = SQCD{v, a, s, p, θ} −
∫

dx〈βΩ〉,

and show that this relation in particular implies the Ward identity

∂xµ〈0|TAµa(x)Pb(y) |0〉 = −1
4
i δ(x− y)〈0|q{λa, λb}q |0〉

+ 〈0|Tq(x) iγ5{m, 1
2
λa}q(x)Pb(y) |0〉

a = 1, . . . ,8, b = 0, . . . ,8

7. What is the Ward identity obeyed by the singlet axial current,

∂xµ〈0|TAµ0(x)Pb(y) |0〉 = ?
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